冯某某--反比例函数的图像和性质教学设计

本文由用户“lishatan529”分享发布 更新时间:2022-01-14 03:23:47 举报文档

以下为《冯某某--反比例函数的图像和性质教学设计》的无排版文字预览,完整格式请下载

下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

2018年房山区骨干教师远程网络培训仿学教学设计

-----《反比例函数的图像和性质》教学设计

冯某某

教学基本信息



单位

韩某某中学

年级

初三



学科

数学

课题

《反比例函数的图像和性质》



教师姓名

冯某某

观摩课例设计教师

鲍某某



观摩课例课题

《一次函数的应用》



指导思想与理论依据

依据《数学课程标准》及新课程理念的要求:“将数学建立在学生的认知发展水平和已有的知识经验基础之上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验,学生是数学学习的主人,教师是从事数学学习活动的组织者、引导者与合作者。



教学背景分析

教材分析:《反比例函数的图象和性质》是北京课改版《义务教育课程标准实验教科书XXXXX数学》九年级上册第十九章第六节反比例函数的内容,本节分为三课时,这是第二课时的新授课。

众所周知,函数是初中代数的核心,反比例函数又是初中阶段要求学习的三种函数中的第二种,是一类比较简单但很重要的函数,现实世界中充满了反比例函数的例子。再一次进入函数范畴的学习,是一次函数和二次函数的延续,在初中函数的学习中起着重要的作用。本节内容在这一章中又占据着举足轻重的地位,将反比例函数的概念和应用紧密联系起来。同时又将以前所学的方程、不等式等知识有机地结合在一起。





学情与学法:

1、学生自主学习。学生在八年级上册的第11章已经学习过一次函数,对研究函数的图象和性质的思想方法已有所了解,在此基础上探索反比例函数的图象和性质,学生通过类比的方法学习,实现知识的正迁移,可以学得比较轻松,同时也会对高中阶段各种函数的学习产生积极的影响。所以要加强引导学生的自主学习,培养学生自主探索,终身学习的意识。

2、探究学习与合作学习。随着《基础教育课程改革纲要》的实施及新一轮基础教育课程改革的推进,探究学习和合作学习受到教育理论界和实践界的极大关注和倡导。在本节课中,学生通过列表、描点、连线画出有别于一次函数图象的双曲线,以及由反比例函数的图象归纳总结出反比例函数的性质会有一定的挑战性,但同时也为学生进行探究学习和合作学习提供了思维活动空间。在活动中培养学生实事求是的精神和团队精神,而且通过合作与交流能够加深对反比例函数的图象和性质的理解。增强学生学好数学的信心。

3、由于学生认知水平,学习能力以及学好函数的信心等方面存在差异,所以探讨活动的效果也会因人而异。这一点我们应该尊重学生的个体差异,尽可能让每个学生都学有所获。





教法:1、采用“问题情境——建立模型——解释、应用与拓展”的模式展开。《数学课程标准》指出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”本节课首先立足于学生实际,结合反比例函数的图象和性质,注重与已学知识之间的联系。以问题为主导,层层推进,使学生的认识螺旋上升,不断提高。

2、引导学生经历“探究—讨论—交流—总结”的过程。《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。新课程改革提出“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”。所以本节课结合八年级学生的年龄特点和心理特征,鼓励学生自主探索与合作交流。在课堂上多动手操作、多观察、多思考,多交流,在活动中获得知识,形成技能,克服对老师的依赖性,让学生在活动中学会探索,学会学习。

3、尊重学生的个体差异,因材施教。对学习有困难的学生给予及时的帮助和关照,鼓励他们主动参与数学学习活动,积极思考,勇于发表自己的见解。对学有余力和爱好数学的学生,注意培养和发展他们的数学才能。

4、充分运用现代信息技术辅助教学。利用ppt和几何画板,通过老师演示、学生亲自操作,努力改变学生的学习方式,让学生在轻松愉快中学到知识,感受到成功的喜悦和学习的乐趣,使学生乐意学习,增强学好函数的信心。











教学任务分析

教学内容

九年级下册19.6反比例函数的图象和性质



教

知识技能

理解反比例函数的性质,会用描点的方法画反比例函数图象。





解决问题

通过观察反比例函数图象,分析、探究反比例函数的性质,培养学生的探究、归纳及概括的能力。学会画反比例函数图象,并能根据反比例函数图象探究其性质。





情感态度

在自主探究反比例函数性质的过程中,让学生初步感知反比例函数图象的对称性。培养学生勤于动手,乐于探索的习惯。



教学重点

画反比例函数图象,理解反比例函数性质。



教学难点

理解反比例函数性质,并能灵活应用。



教具

多媒体课件



学具

坐标纸 直尺





教学流程安排

活动流程图

活动内容和目的



活动1 创设情境 引入课题

活动2 类比联想 探究交流

活动3 探索比较 发现规律

活动4 运用新知 拓展训练

活动5 归纳总结 布置作业

回顾一次函数图象及性质,引入课题。

师生互动,类比一次函数的图象的画法步骤,画出反比例函数的图象。

归纳比较,探索反比例函数的性质。

拓展训练,加深对反比例函数性质的理解,并能灵活运用。

回顾学习内容,增强学生学习数学的热情。



教学过程设计

问题与情境

师生行为

设计意图



活动一

(1):回忆一次函数的解析式、图象和性质。

(2):回忆画函数图象的方法与步骤

教师提出问题

学生思考、回答,教师根据学生活动情况进行补充和完善。

在活动中教师应重点关注:

学生对一次函数知识点的掌握情况;

学生对描点法画函数图象的基本步骤的掌握情况:列表,描点,连线。

通过创设问题情境,引导学生类比前面学习一次函数的图象和性质的方法,激发学生参与课堂的热情,开始本节课的探究,为学习画反比例函数的图象打好基础



活动二

(1):画反比例函数y=6/x与y=-6/x的图象。

(2):比较y=6/x与y=-6/x的图象他们有什么共同特征?他们之间有什么共同关系?

师生互动,鼓励学生类比一次函数的画法,探索画出反比例函数的图象。教师先引导学生思考,示范画出反比例函数 y=6/x的图象,再让学生尝试画y=-6/x的图象。

教师在引导学生画反比例函数的图象时,应重点关注:

学生在列表时,是否注意到了自变量的取值应使函数有意义(x≠0);同时,既要使自变量的取值有一定的代表性,又不至于使自变量或对应的函数值太大或太小,以便于描点和全面反映映出图象的特征。

一般情况下,描出的点越多,图象越精细。

连线时,必须按自变量由小到大的顺序用平滑曲线连接。

学生是否注意到反比例函数曲线的两个分支是断开的,延伸部分逐渐靠近坐标轴,但永远不和坐标轴相交。

教师将两个图象置于同一直角坐标系中并提出问题。

学生观察思考,回答问题。

在活动中教师应关注:

(1)学生是否具有用数学语言描述图象特征的能力

(2)学生是否理解在同一直角坐标系内两个反比例函数图象的对称关系。

学生独立思考完成,安排两名学生展示。

这是突破本节课重难点的第一个环节。让学生应用描点法画出反比例函数的图象,关注画图的基本步骤。以及每一个细节的处理,培养学生动手操作的能力和习惯。也为以后画其他函数图象奠定基础。

学生通过观察比较,总结出两个反比例函数图象的共同特征,以及在平面直角坐标系中的位置。在活动中,加强引导,放手让学生去观察,去类比发现,去感受,去总结,实现学生主动参与,探究新知的目的。



活动三:

对k的值进行分类讨论,自选k的值,画函数y=k/x的图象。

(1)图象在第一、第三象限的函数与图像在第二、第四象限的函数的k值有何区别?利用几何画板进行观察、探究k>0和k<0两种情况。

(2)在每一个象限内,y随x的变化如何变化?

完成开篇时的图表。

教师提出问题

学生自选k值画函数图象

在活动中教师应关注k值不要过大或过小,以便于描点画图。

教师统计分类情况,利用几何画板加以汇总展示。

学生小组讨论,观察思考后进行分析、归纳、得出反比例函数的性质。

(1)反比例函数y=k/x(k为常数,k≠0)的图象是一种双曲线。

(2)当k>0时,双曲线的两个分支位于第一、三象限,在每个象限内y随x的增大而减小。

(3)当k<0时,双曲线的两个分支位于第二、四象限,在每个象限内y随x的增大而增大。

在活动中教师应关注:

(1)学生对反比例函数图象的认识和理解。

(2)学生能否通过观察、比较、分析和探讨判断出反比例函数的图象所在的象限由k值决定,能否由反比例函数图像的位置判断出k的符号,由k值说出反比例函数图象的位置。

(3)学生是否理解反比例函数的两个分支在相应的象限内,随x值的增大(或减小)y值得增减规律。

(4)学生运用数学语言描述问题的能力。

进一步巩固画函数图象的基本步骤,增强学生动手操作能力。

通过对每个函数图象的位置与k值的符号关系的探讨,得出性质2。有利于学生加深对性质的理解和掌握,使学生经历从特殊到一般的过程,体验知识产生形成的过程。逐步达到培养学生抽象概括能力和激发学生的求知欲望。

学生借助函数图象,利用分类讨论的思想,正确理解反比例函数的增减性。并且强调反比例函数的增减性是在同一象限内讨论,而且由系数k的符号决定.同时对学生进行辩证唯物主义思想教育



活动四

问题

(1)强化基础

(2)拓展训练

(3)实际应用

教师提出问题

学生思考回答1.下列图象中,是反比例函数的图象的是 ( )

2.反比例函数y= -5/x的图象大致是( )

3.函数y=10/x的图象在第________象限,在每一象限内,y 随x 的增大而_________.

4.函数y=-20/x的图象在第________象限,在每一象限内,y 随x 的增大而_________.

5.函数y=XXXXX/x,当x>0时,图象在第____象限, y随x 的增大而_________.

6.已知反比例函数y=(4-k)/x,若函数的图象位于第一、三象限,则k_____________;若在每一象限内,y随x增大而增大,则k_____________.

7.长方形的面积为10cm,则它的长y与宽x之间的关系用图象大致可表示为( )

熟悉反比例函数的图象和性质,区别一次函数与反比例函数以及二次函数的图象,进一步体会数形结合的思想,从数和形两方面加深对反比例函数性质的认识。

通过变式练习,巩固所学知识,灵活运用反比例函数的图象和性质,提高解决问题的能力。



活动五

归纳总结:

本节课学习了哪些知识?你有什么收获?在知识应用过程中需要注意什么?

教师提出问题。

学生自己整理与回顾。

师生共同概括总结。

使学生全面理解反比例函数的图象及其性质。让学生体验到学习数学的快乐,养成好的学习习惯。学生课后独立完成,及时复习巩固所学知识,进行学习效果的自我评价。



板书设计

19.6反比例函数的图象和性质(一)

1、反比例函数的图象:

2、反比例函数的性质:

(1)反比例函数的图象是双曲线;

(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;

(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

3、练习



学生学习活动评价设计

评 分 细 则

评分





课前准备 10分

认真完成老师布置的预习作业,在上课前摆好课本、草稿本、练习本,并安静。10分

基本完成老师布置的预习作业,在上课前摆好课本、草稿本、练习本,并安静。8分

基本完成老师布置的预习作业。但未能做好上课的准备。 6分

以上要求完成不好。 4分或以下







课堂表现 30分

认真听课,积极进行课堂学习活动。并有自已独立的见解。 30分

基本上能认真听课,积极进行课堂学习活动。25分

能认真听课,并进行课堂学习活动。但有分神的现象。要教师约束。20分

在教师的约束学习活动不佳。 15分或以下

?





作业完成 30分

按时保质保量独立完成,并有一题多解或奇思妙解。30分

按时保质保量独立完成。 25分

基本能按时完成。20分

有不交作业或抄袭等的现象。 15分或以下







数学活动 20分

独立完成教师安排的学生小论文、小作文、小制作等,并被教师评为优秀。 20分

独立完成教师安排的学生小论文、小作文、小制作等,并被教师评为良好。 18分

完成教师安排的学生小论文、小作文、小制作等,并被教师评为合格。 15分

不能达到以上要求。 10分或以下







小组活动 10分

积极参加小组活动,有独立见解,动手、动口、动脑能力强,与同学合作愉快。所在小组活动被教师表扬。 10分

积极参加小组活动,爱动手、动口、动脑能力强,与同学合作愉快。8分

能参加小组活动,与同学合作愉快。6分

达不到以上要求。 4分或以下







总 评

80分以上评优,70-80评良,50-60评合格,50分以下评不合格。

总分:

等级:





教学设计的特点

本节课首先加强新旧知识的联系,由老师引导学生回顾描点法画函数图象的方法,激活学生原有的知识。其次加强学生学习的主动性与探究性,引导学生画反比例函数的图象,并让学生通过观察图象,探究分析,得出反比例函数的性质,让学生经历知识的产生和形成过程,避免学生的知识由老师灌输得到,充分调动学生自己动手,主动探索,在观察、感受、讨论、发现,探究总结、合作与交流中体会到了参与的乐趣,成功的喜悦和感知数学的奇妙。把新课程改革的精神落实到教育教学中的每一个细节。

1、教学设计应符合学生的认知规律,以学生的旧知原有思维作为学生思维的切入点,创建了轻松愉悦的有信心课堂氛围。除培养学生积极思考、主动发言的能力外,还培养了学生的审美能力、空间观念,发展了创造力,丰富了想象力以及动手操作能力.学生在教师的引导下自主体验、建构知识,实现了知识的再创造。学生通过小组活动,在合作学习中增强与他人的合作意识。

2、本节课的学习方式主要采用探究性学习与接受性学习相结合方式,重点放在反比例函数图象的特征与性质的探究与掌握上,力求通过这一过程使学生感受从“特殊”到“一般”的认知过程,感悟数形结合、分类、归纳、运动与变化的数学思想。

3、本节课知识点的传授主要采用了与正比例函数相对照的方式进行的,这是根据现代建构主义的理论,从思维的最近发展区,通过有关知识的联想激活学生原有的函数知识,巧妙的引导学生发现正,反比例函数之间的区别与联系,掌握新知。





教学反思

1、优点: (1)让学生经历“回忆——对比——猜想——分析——验证”的思维过程。先让学生画一次函数y=2x+4的图象。回忆函数图象的画法(列表,描点,连线),再让学生猜想的图象,并引导学生围绕图象点的横纵坐标的符号特征,来预测它的图象,并与y=2x+4的图象进行对比,最后,学生带着疑问进行探索,画的图象,并最终验证了自己的猜想。 (2)在学生亲手画出一次函数y=2x+4的图象后,通过对比辨析反比例函数的图象概念及其特点,使学生得到深刻的认识和理解。 (3)无限接近的理解。这是难点,学生没有生活经验。为了增加学生的感性认识,我拓展介绍了“无限可分和无限接近”的概念。并用直尺进行演示,使学生对于“无限”的理解有了实例的依托。 (4)在讲解的图象是中心对称图形时,列举了特殊的点来对比认识其中心对称性,让学生真正理解。 2、不足: (1)反比例函数图象的概念出示过早,特别是图象的两个分支在“一、三或二、四”象限时,学生没有感性认识。 (2)学案设计有缺陷。直角坐标系和表格准备不当,给学生在操作画图时带来了不必要的干扰。影响了教学效果。 (3)习题练习不充分,讲解时学生的主动性没有发挥。 3、改进: (1)学生画函数图象时,细节不够重视,教师可在课前把范例准备好,以便学生能够对比发现自己的不足,进而改进。 (2)对于反比例函数图象的画法,可让学生先小组讨论完成,这样有助于学生对反比例函数的深入理解,也可为后续学习其性质和应用增加一些思维锻炼。 (3)学案设计要简明,要求和步骤应在学案上清楚表明,以便学生能够清楚认识学习的任务和步骤,也方便教师掌握教学进度。





[全文已结束,注意以上仅为全文的文字预览,不包含图片和表格以及排版]

以上为《冯某某--反比例函数的图像和性质教学设计》的无排版文字预览,完整格式请下载

下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

图片预览